TECHNICAL RESEARCH REPORT

A Wavefront Array for
URY Decomposition Updating

by A. Raghupathy, U-V. Koc and
K.J.R. Liu

T.R. 95-46

INSTITUTE FOR SYSTEMS RESEARCH

Sponsored by

the National Science Foundation
Engineering Research Center Program,
the University of Maryland,

Harvard University,

and Industry

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1995 2. REPORT TYPE 00-00-1995 to 00-00-1995
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Wavefront Array for URV Decomposition Updating £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Department of Electrical Engineering,I nstitute for Systems REPORT NUMBER
Resear ch,University of Maryland,College Park,MD,20742

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 8
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

A Wayvefront Array for URV Decomposition Updating

Arun Raghupathy, Ut-Va Koc and K. J. Ray. Liu
Electrical Engineering Department and Institute for Systems Research
University of Maryland, College Park
EDICS No. SPL. SP. 5. 1

ABSTRACT

The rank revealing URV decomposition is an effective tool in many signal processing applications
that require the computation of the noise subspace of a matriz. In this paper, we consider a par-
allel architecture for updating the URV decomposition on a wavefront array. The wavefront array
provides an efficient real time mechanism for adaptive computation of the null space of a matriz as
well as for handling rank changes during updating.

1 INTRODUCTION

Many signal processing problems require the computation of the approximate null space of the
data arranged in the form of a n x p matrix A. The rows of the matrix represent the samples
of a signal. For example, in applications such as antenna beamforming, spectral estimation and
direction finding, the signal and/or noise subspaces need to be estimated [4]. The singular value
decomposition (SV]j) is the common tool used to estimate the null space of a matrix. Besides
the fact that it is expensive to compute, it is also expensive to update [1] [2]. Most of the known
exact updating schemes for the SVD require O(p3) operations. So it is difficult to track the null
space of a matrix using SVD. Another approach is to decompose the data matrix, using a rank
revealing version of the QR decomposition, into the product of an orthogonal matrix, an upper
triangular matrix and a permutation matrix. A systolic array implementation of the Chan-Foster
RRQR algorithm has been discussed in [3].

Recently, a new efficient numerical tool was introduced that can update the null space of a
matrix when a new row of data arrives. The rank revealing URV decomposition proposed in
[1] is an intermediary between the SVD and the RRQR that can be updated easily using O(p?)
operations while still providing an explicit basis for the null space. The URV decomposition and

the QR decomposition constitute powerful computational tools for array processing [1] [4].

*This work is supported in part by the NSF grants MIP9457397 and MIP9309506, and the ONR, grant N00014-
93-11028.

In this paper we discuss how the rank revealing variant of the URV decomposition can be
updated on a data-driven wavefront array. The emphasis here is to develop an architecture that
can implement both the URV and QR decompositions so that all computational issues related to

adaptive array processing can be performed on one single parallel processing environment.

2 URV UPDATE

If the n x p data matrix A has a rank k£ with the singular values satisfying oy > --- o > of41 >

.-+ > op with oy being large compared to o1, then the URV decomposition of A can be written

AzU(IO% F)VT. (1)

as

G

In the above equation, U and V are n x n and p X p orthogonal matrices respectively. R and
G are upper triangular with inf(R)2 oy. Also, if v is defined by v = /|| F || + || G ||, then

v \/a,% +1+ -+ 02 In order to distinguish the small singular values from the large ones, a

tolerance tol must be specified. For the URV decomposition v is compared with tol in order to
separate the signal space and the noise space.

When a new data row of data z7 is available, it is appended to the original data matrix A as
its last row to form the new data matrix. The problem of updating the URV decomposition is that

of finding the decomposition of the new data matrix given the decomposition of A. Since

UT o A RF
0 1 z T T

X

<

where (zT yT) = 2TV, the problem reduces to that of updating A. The following steps are required

to update A:
Step 1. Compute 27V to obtain (:L‘T yT).
Step 2. A is updated in one of the following ways based on the relative values of tol, v and || y ||2.
Case 2a) If \/u+ [[y |? < tol , we are assured the rank cannot increase and A can be

triangularized by a sequence of left rotations.

Case 2b) If /v+ [y [|2 > tol, an increase of rank occurs. The matrix has to be transformed
to an upper triangular form without destroying all the small values of F' and G. This is
done by interleaving left rotations with right rotations for the y7 part and left rotating
the 2T part into R. In this case the V matrix must be updated because right rotations

are involved.)
Note that all rotations referred to in this paper correspond to Givens rotations.

3 SYSTEM COMPONENTS AND FUNCTIONS

For URV decomposition, a wavefront array is preferred over a systolic array because of the following
reasons. Firstly, we need to perform interleaved left and right rotations in one of the steps. The
computational wavefronts of the interleaved left and right rotations do not flow unhindered but
cross each other. Also, this left rotation differs from the left rotations in the Gentleman-Kung’s
array for QRD [6] in that the rotation is applied to the ith and (¢ + 1)th rows instead of between
the ith row and the last row of the augmented data matrix. Thus we prefer a data driven approach.
Secondly, a wavefront array provides flexibility for programming([5] . This means that the functions
of cells can be modified easily to take into account rank changes during an update.

The operation consists of 2 modes. Mode 1 corresponds to Case 2a) while Mode 2 corresponds
to Case 2b). The matrix V is stored on the linear array of processing elements (PE’s) labeled
V in Fig. 1 (one column on each processor). The data 27 is fed serially to the V PE’s at the far
left. The V PE’s multiply 27 by V to produce the vectors zT and 7 which are then transmitted
upwards to the RR PE’s. The V PE’s also compute || y ||?. This result is used by the processor
VO at the extreme right end of the linear array of V PE’s to decide between Mode 1 and Mode
2 operations for the particular update. Finally, the V PE’s also accumulate the right rotations in
Mode 2 by right rotating the V' matrix. '

The triangular part of the array stores the R, F and G matrices (Fig. 1). In mode 1 the R, G
and F PE’s perform left rotations while the RL PE’s generate the left rotations as in the Gentleman-
Kung array. In mode 2 the R PE’s perform only left rotations, the G PE’s perform interleaved
left and right rotations and the F' PE’s perform only right rotations. The RL PE’s generate the
left rotations which are propagated along the row whereas the right rotations generated by the RR
PE’s are propagated upwards along a column.

For each processor we need to specify the sequence of computations that it needs to perform
(see Table 1). The computation is data-driven rather than being globally synchronized on a global
clock. This means that a processor starts a particular computation when the data required for it
is made available by the neighbouring PE’s. This requires some sort of handshaking between PE’s.

The rank of the data matrix may change during an update. As a result of this the size of the
R, F and G matrices can change. This means some processors have to change their function. We
introduced what we refer to in this paper as rank-masking to handle this problem. Each processor
stores one value termed the rank-mask that determines what functions it performs during an update.
If the rank changes, then we must be able to update the rank-mask to reflect the operations that
the PE’s need to perform during the next update. The mode of operation is communicated to all
PE’s using control signals in order to facilitate this updating. The rank-mask is defined as follows.
The R PE’s have a mask value of 0. Let k represent the initial rank of the data matrix. The integral
parts of the mask values of columns (k + 1), (k+2),---,(k+ (p—k)) are 1,2,---,(p— k). The F

PE’s have an additional fractional part of 0.5. The control pattern that updates the rank-mask
when the rank increases from £ = 3 to k¥ = 4 is shown in Fig. 2. A ”-1” is propagated upwards
on each column that has non-zero rank-mask values and a "0” is propagated up the columns with
zero rank-mask values. Also, the RL PE with rank-mask 1 sends a control signal of ”0.5” along
their rows while all other RL PE’s with non-zero rank-mask send a ”0” along their rows. At each
PE, the control signals entering it from below (and possibly from the left) are summed to get the
new rank-mask value. Under the additional constraint that, if the newly computed rank-mask is
0.5, then it is modified to 0, the update is completed correctly.

In mode 1, the left rotations differ from those performed by the PE’s in the Gentleman-Kung
systolic array for QRD in that, the new data is fed in from the diagonal elements of the array rather
than from one of the other sides [4]. Each processor (F,G or R) receives data from the PE below
it and passes the data upwards until it reaches the top of the array. Then the processor waits for
the data from the processor above it, perform left rotations on the data and then passes the result
to the PE below it. The RL PE’s generate the left rotation parameters by annihilating the data
obtained from processors above them and then transmit the left rotation parameters along the row.

In mode 2, the RR cells receive the result of the matrix-vector multiplication from the V PE’s
and then generate the right rotation parameters by annihilating yin in the pair (y yin) (See Table
1). The result is transmitted to the next adjacent RR processor through yout. Note that the /th
column of PE’s (consisting of F and G PE’s) perform the right rotations corresponding to the Ith
and (I + 1)th columns. Also observe that the G PE’s of the ith row perform left rotation between
the 7th and (7 + 1)th rows whereas the R PE’s perform left rotation parameters to annihilate the
z vector. The RL PE’s with non-zero rank-mask values generate the left rotation parameters to
annihilate the non-zero sub-diagonal elements produced by the right rotation while the other RL
PE’s generate left rotation parameters to annihilate the z vector. The G PE’s perform left and
right rotations using the cosine and sine parameters generated by the RR and RL PE’s while the
F PE’s perform only the right rotations that are generated by the RR PE’s. The details are shown
in Table 1.

In mode 2, the V PE’s that have a non-zero rank-mask also have to accumulate the right
rotations into the V matrix (i.e they have to perform right rotations similar to the F PE’s). We
used a linear array for doing the matrix vector multiplication as opposed to a full square array with
each processor storing one element of V. This is because the bottleneck lies in the computation of
|| v ||? (since it is available only after the whole matrix-vector multiplication is completed), so there

is no gain in further pipelining the multiplication.

4 PERFORMANCE AND CONCLUSION

For continuous mode 1 operation, if the serial feed-in of the first row of data is started at time 0,

then after carefully analyzing the various computational wavefronts we find that the next set of

data can be piped into the system at time 3p. The 3p delay is required for the multiplication to be
completed and then for the control signal to propagate back to the V PE’s. If we allow the control
to be broadcast to all RR PE’s, then this delay can be reduced to 2p (viz. the time it takes to
complete the matrix-vector multiplication).

The performance of the system under the assumption that the control is broadcast to all RR
PE’s as summarized in Table 2. Note that we have assumed that each operation takes unit time.
Each entry in the table corresponds to the time taken for that particular step when there is no
pipelining between various steps. The entry "the total time when pipelined” takes into account
two kinds of pipelining, one between the steps and the other between one update and the following
update. So the total time specified under mode 1 (i.e 2p — 1) indicates that if a sequence of mode
1 updates are performed then a new row can be fed in every 2p — 1 units of time. In mode 2 the
corresponding time is 3p — 1 because in this case the rank update requires control propagation
before the rotations can be completed.

It is also interesting to note that this implementation (with minor modifications) can have
broader application than what has been mentioned in this paper. For example, this array can be
used to implement the QRD-RLS although the throughput may not be as good as the Gentleman-
Kung’s systolic array. All we need is an additional column of PE’s to the extreme right to compute
the residual and some minor modifications to processor functions.

In this paper we have presented a VLSI architecture for the implementation of the URV update
which involves complex data flows that cannot be easily handled by a systolic design. The solution
that we proposed in the form of a wavefront array has the additional advantages of flexibility and

easy programmability. Computer simulations confirmed the results presented in this paper.

References

[1] G. W. Stewart, “An Updating Algorithm for Subspace Tracking,” IEEE Transactions on Sig-
nal Processing, vol. 40, no. 6, June 1992.

[2] K. J. R. Liu, D. P. O'Leary,G. W. Stewart and Y. -J. J. Wu, “URV ESPRIT for Tracking
Time-Varying Signals,” IEEE Trans. on Signal Processing, Vol 42, No 12, pp.3441-3448, Dec.
1994.

[3] F. Lorenzelli, P. C. Hansen, T. F. Chan and K. Yao, “A Systolic Algorithm of Chan/Foster
RRQR Algorithm,” IEEE Transactions on Signal Processing, vol. 42, no. 8, August 1994.

4] Simon Haykin, Adaptive Filter Theory, Prentice-Hall, 1991.

5] S. Y. Kung, VLSI Array Processors, Prentice-Hall, 1988, pp. 295-302.

6] W. M. Gentleman and H. T. Kung, “Matrix triangularization by systolic array,” Proc. SPIE
Int. Soc. Opt. Eng., vol. 298, p. 298, 1981.

[
[
[

Processor Type Mode 1 Mode 2
if rank-mask=0
RR Suout (crsr) y=gdin y=gdin
guout=y guout=y
else {yout,cr,sri=gen-rt[y yin]
[guout grout] <§;— rot-rt[0 grin]
if rank-mask=0
guout=gdin guout=gdin
[g.cl,sl]=gen-It{g guin] {g,cl,sl]=gen-1t[g guin]
15 1g grout] < rot-rt[g grin]
[g.clsl]=gen-lt[g gdin] ;glout=g ;
g=glin ;guout=g ;
(cr,sr) g=guin
G guou;r(‘cr*’sr‘zguin guout=gdin [g grout] <—cs% rot-rt[g grin] ;glout=g ;
glin grout [g gdout] <r:i rot-1t[r guin] =glin
clsh—> g [(lsh st s |
glout f) gnn g gdout]{l— rot-1t{g gdin] ;guout=g ;
gdin gaout .
(cr,s1) =guin
F guousicrésr)guin guout=gdin (g grout] % rot-rt{g grin] ;glout=g ;
; 1
glin -4 _grout g gdout]<— rot-ltfr guin] | g=glin
(s 8 [3=(clsD sl
glout grin
gdinlr * 1’gdout
(cr,s1)
uout guin .
R § & guout=gdin guout=gdin
cl . dout <L t-1¢ i
(clsh—>| ¢ Fa (cls) [r gdout] - rot-1t[r guin] [r gdout] s ° [r guin]
gdin gdout
Vo vaout 5P if rank-mask=0
% i rout No operation No operation
Vit | j else
von for (1<=i<=p)
v [v(i) vrout] < rot-rt{v(i) vrin] ;vlout=v(i) ;
v(i)=vlin ;
__ Find cr and sr such that:
KEY: X X [x.crst]=gen-rt{x y] = [X:| _ l: X:I |:cr sr:|
[x z]%rot-rt[x i = [z] = [y] [_;:rr Zf.:] o~ LydLlsr cr

[x z]<‘s’—rr rot-lt[x y]

= a0]

Table 1: Cell Operations in Different Modes

[x,cLsl]=gen-lt[x y] = |:x j ~[cl

Find cl and sl such that:
sl X

0 -sl cljiy

Step of Time in | Time in
URV update Mode 1 | Mode 2
Matrix Multiplication | 2p — 1 2p—1
Control Propagation | p P
Rotations 2p—-1 |p—k
Total time 2p-1 Ip-1

when pipelined

Table 2: Performance of the System

Figure 2: The Rank Update

[P ta

1"y

© © Ll &] [E]

[
[7 [

X3

© © B EEE]

